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Indicators from 
remote sensing 
data using 
machine learning



● Remote sensing data

• Aerial false-color images with high ground resolution (0.3m)

• Airborne laser scanning data with average point density of 
1.66 pts/m²

● Ground reference data

• Around 1500 circular field plots with 9m radius over an area 
of ca. 5800 km²

• The reference data includes total and species-wise total 
growing stock (m³/ha), mean diameter at breast height (cm) 
and mean height (m)
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Data
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Ground reference data



● k-nearest neighbors combined with genetic algorithm

• Similar method currently used in Finnish MS-NFI

● Traditional machine learning methods, such as Random Forest 
(RF) and Artificial Neural Networks (ANN)

● Modern deep learning methods, especially Convolutional 
Neural Networks

• CNNs are nowadays the method of choice in different 
computer vision tasks
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Methods



Data processing for k-NN and traditional
machine learning methods
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● Traditional methods are not
able to process raw data

● From aerial imagery, we
extracted optical features as 
well as textural features
(around 100 features total)

● From LiDAR point clouds, 
around 70 point cloud level
metrics were computed

zmax=16.785, zmean=2.63,…,green_max=0.76, red_max=0.85…



Data processing for deep learning methods 
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● The main advantage of deep 
learning methods is that 
they are able to extract 
features from the raw data

● Aerial images can be fed to 
CNN without any processing

● LiDAR point clouds, however, 
need to be voxelized before 
feeding to the models
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Total volume (m³)

k-NN

RF ANN

CNN

● CNN was able to 
outperform other 
methods by using 
only voxelized
LiDAR data

● For larger total 
volumes, all 
methods tend to 
underestimate 
total volume 
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DBH (cm)

k-NN

RF ANN

CNN

● All tested methods 
achieve almost 
equal results, with 
only minor 
differences 
between best and 
worst results
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Average height (m)

k-NN

RF ANN

CNN

● Again, no major 
differences 
between methods

● However, average 
height can be 
modelled from 
LiDAR data without 
any complex model
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Volume of pine (m³)

k-NN

RF ANN

CNN

● Predictions for CNN 
were acquired with 
two-step process

• Proportions of 
species from 
aerial images

• Species-wise 
volume from 
predicted total 
volume
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Volume of spruce (m³)

k-NN

RF ANN

CNN

● Predictions for CNN 
were acquired with 
two-step process

• Proportions of 
species from 
aerial images

• Species-wise 
volume from 
predicted total 
volume
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Volume of deciduous trees (m³)

k-NN

RF ANN

CNN

● Predictions for CNN 
were acquired with 
two-step process

• Proportions of 
species from 
aerial images

• Species-wise 
volume from 
predicted total 
volume



RF ANN k-NN CNN

Volume 26.01% 24.07% 23.82% 21.03%

DBH 12.64% 12.49% 12.42% 11.73%

Height 7.19% 7.45% 8.04% 6.55%

Pine 45.03% 43.99% 39.20% 42.18%

Spruce 122.20% 124.11% 114.08% 134.90%

Deciduous 97.93% 90.44% 86.25% 167.37%
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Recap of results (RMSE-%)



● For most of the variables, 3D-CNN achieved the best results

● For other attributes than species-wise volumes, utilizing only 
LiDAR data yielded similar or better results than aerial imagery 
or combination of both data sources

● Proportions of different species are the most difficult attributes 
to model

● Higher laser point density is expected to improve results of CNN 
methods
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Conclusions



● In order to acquire comparable ecosystem indicators estimated 
forest variables are scaled between 0 and 1

● This enables comparability not only between different areas 
within the same project but also between projects

● Forest variables useful as indicators e.g.

• tree species composition

• mean height as a proxy for age

● Vertical and horizontal structure of forest canopy is one of the 
key ecosystem indicators, but e.g. current laser data point 
density is not high enough for extracting those indicators
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From forest attributes to ecosystem 
indicators


