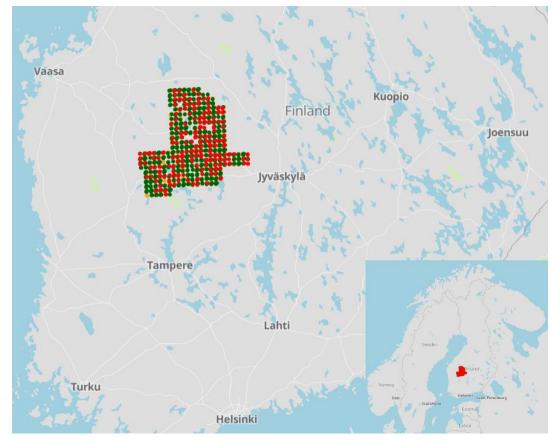
Indicators from remote sensing data using machine learning

Janne Mäyrä, SYKE Andras Balazs, LUKE 25.01.2021



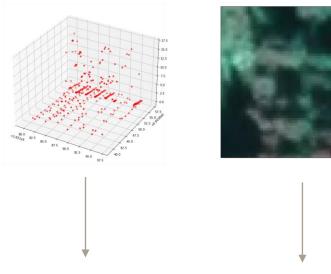
Data

- Remote sensing data
 - Aerial false-color images with high ground resolution (0.3m)
 - Airborne laser scanning data with average point density of 1.66 pts/m²
- Ground reference data
 - Around 1500 circular field plots with 9m radius over an area of ca. 5800 km²
 - The reference data includes total and species-wise total growing stock (m³/ha), mean diameter at breast height (cm) and mean height (m)

Ground reference data

S Y K E

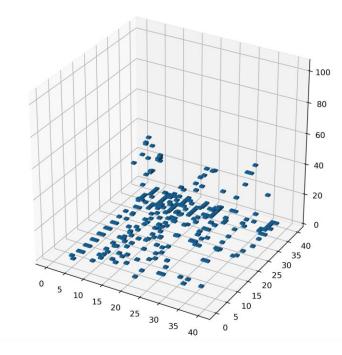
3


Methods

- k-nearest neighbors combined with genetic algorithm
 - Similar method currently used in Finnish MS-NFI
- Traditional machine learning methods, such as Random Forest (RF) and Artificial Neural Networks (ANN)
- Modern deep learning methods, especially Convolutional Neural Networks
 - CNNs are nowadays the method of choice in different computer vision tasks

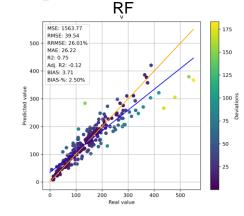
Data processing for k-NN and traditional machine learning methods

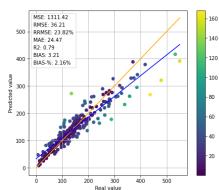
- Traditional methods are not able to process raw data
- From aerial imagery, we extracted optical features as well as textural features (around 100 features total)
- From LiDAR point clouds, around 70 point cloud level metrics were computed


zmax=16.785, zmean=2.63, ..., green max=0.76, red max=0.85...

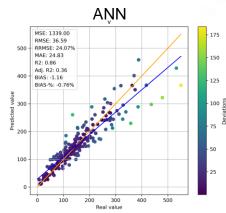
Data processing for deep learning methods

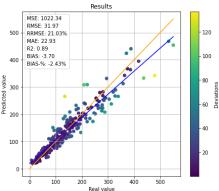
- The main advantage of deep learning methods is that they are able to extract features from the raw data
- Aerial images can be fed to CNN without any processing
- LiDAR point clouds, however, need to be voxelized before feeding to the models


SYKE

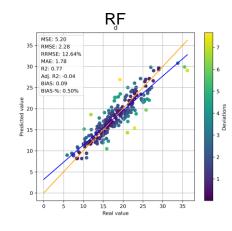

Total volume (m³)

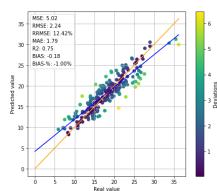
- CNN was able to outperform other methods by using only voxelized LiDAR data
- For larger total volumes, all methods tend to underestimate total volume

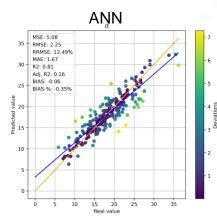

SYKE



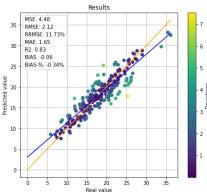
Se


CNN


DBH (cm)

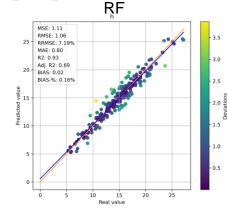

SYKE

 All tested methods achieve almost equal results, with only minor differences between best and worst results

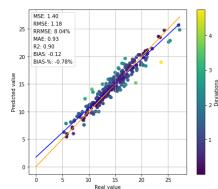


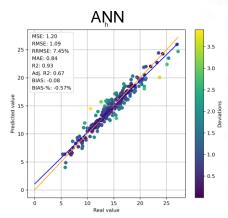
k-NN

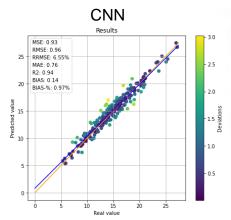
CNN

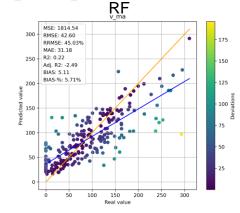


8

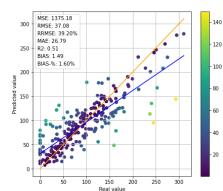

Average height (m)

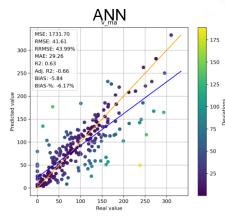

- Again, no major differences between methods
- However, average height can be modelled from LiDAR data without any complex model


SYKE

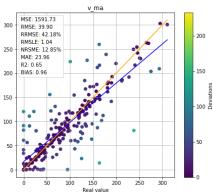


Q

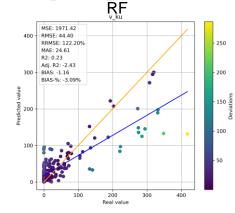

Volume of pine (m³)


- Predictions for CNN were acquired with two-step process
 - Proportions of species from aerial images
 - Species-wise volume from predicted total volume

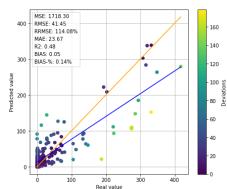
SYKE

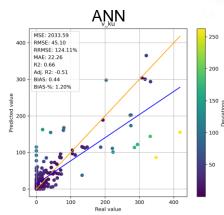


CNN

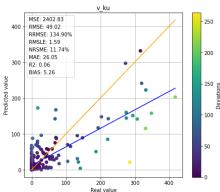

10

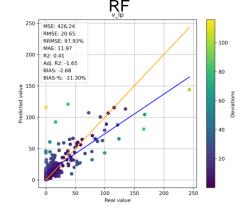
Predi

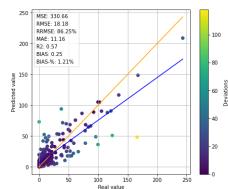

Volume of spruce (m³)

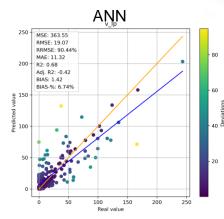

- Predictions for CNN were acquired with two-step process
 - Proportions of species from aerial images
 - Species-wise volume from predicted total volume

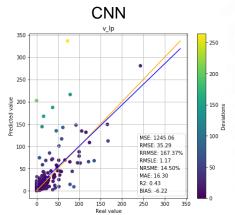
SYKE




CNN


Volume of deciduous trees (m³)


- Predictions for CNN were acquired with two-step process
 - Proportions of species from aerial images
 - Species-wise volume from predicted total volume


SYKE

12

Recap of results (RMSE-%)

	RF	ANN	k-NN	CNN
Volume	26.01%	24.07%	23.82%	21.03%
DBH	12.64%	12.49%	12.42%	11.73%
Height	7.19%	7.45%	8.04%	6.55%
Pine	45.03%	43.99%	39.20%	42.18%
Spruce	122.20%	124.11%	114.08%	134.90%
Deciduous	97.93%	90.44%	86.25%	167.37%

Conclusions

- For most of the variables, 3D-CNN achieved the best results
- For other attributes than species-wise volumes, utilizing only LiDAR data yielded similar or better results than aerial imagery or combination of both data sources
- Proportions of different species are the most difficult attributes to model
- Higher laser point density is expected to improve results of CNN methods

From forest attributes to ecosystem indicators

- In order to acquire comparable ecosystem indicators estimated forest variables are scaled between 0 and 1
- This enables comparability not only between different areas within the same project but also between projects
- Forest variables useful as indicators e.g.
 - tree species composition

KF

- mean height as a proxy for age
- Vertical and horizontal structure of forest canopy is one of the key ecosystem indicators, but e.g. current laser data point density is not high enough for extracting those indicators